Using old Spam and Ham Samples to Train Email Filters

Jose-Marcio Martins da Cruz
Centre de Calcul et Systemes d’Information
Ecole des Mines de Paris
Paris, France
Jose-Marcio.Martins@mines-paristech.fr

Gordon V. Cormack
Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
gvcormac@uwaterloo.ca

ABSTRACT
Email spam filters are commonly trained on a sample of recent spam and ham (non-spam) messages. We investigate the effect on filter performance of using samples of spam and ham messages sent months before those to be filtered. Our results show that filter performance deteriorates with the overall age of spam and ham samples, but at different rates. Spam and ham samples of different ages may be mixed to advantage, provided temporal cues are elided. The experiments on both corpora show that performance deteriorates faster when using only the body of messages than when using the whole message or headers only.

1. INTRODUCTION
Spam filters are commonly trained on historical collections of messages, each labeled as spam or ham (non-spam). Their theory of operation assumes that these training messages are a random sample of those to be filtered; an assumption that is clearly not true because, when the filter is trained, the set of messages to be filtered exists only in the future. It is known that future messages are best approximated by recent messages [5].

Under the assumption that models built with recent samples best represent what future objects will be, models should be continuously updated, including new samples and forgetting old ones. Over time, models may become inadequate for several reasons: class priors can change over time or underlying changes can happen on the nature of objects being studied.

However, acquiring and labeling recent messages may be impractical, and they may not be plentiful enough for adequate training. Sometimes, it is better to rely on knowledge of the time at which changes happen to the nature of objects being studied.

In this paper we present some experiments we’ve done in order to understand what happens to the effectiveness of a filter being used in conditions which aren’t ideal: less-than-recent training samples or samples having different ages. Also, we’re more interested in understanding qualitative behaviours than absolute values of effectiveness, as the latter depends heavily on the kind of classifier being used and on the context.

This paper is organized as follows. Section 2 recalls some relevant research on how to update models used by classifiers to solve the concept drift problem in spam filters. Section 3 presents the objectives of our this paper. Section 4 presents the environment in which we’ve done our experiments. In section 5 we describe our experiments and present results. And finally sections 6 and 7 presents some discussion and conclusions.

2. RELATED WORK
It’s usually accepted that email characteristics change over time [12]. While it can be assumed that people don’t change frequently the way they write legitimate messages (hams), spam evolves for different reasons. The amount of spam changes to reflect spam activity [12], so class priors change accordingly. Spam filtering can be seen as an adversarial game [18] where the strategy of each part changes over the time: spam content change as spammers want to deceive spam filters (generating false negatives) and spam filters change to adapt to the changes in spam content.

It has been shown that spam filter evaluation is more accurate when using an on-line model, where messages are submitted in chronological order, than with a batch model where order is irrelevant [5]. This reflects the time dependency of email.

Changes in class (target) priors may be simpler to handle, as they may be observed directly. Changes appearing in hidden concepts [22], may be much harder to detect and may even be confounded with noise, as these changes can’t be correlated to any directly measurable parameter. Changes in hidden concepts is usually referred as concept drift [22].

Machine learning techniques are applied to many domains handling non-stationary streams of data. Research in these domains is very active and probably even more than in the spam filtering domain. Data Mining research is intended to identify and acquire information from streams of data [14] or even simply to detect when changes occur and the speed of change [1][3]. Clustering [2] and On-line Classification [23] of non-stationary data streams are domains nearer our
spam filtering problem.

The canonical solution implies that all past relevant samples shall be available and some method exists to integrate new samples to the current model and to forget the oldest or less useful ones. The two hard points of this approach are the storage space needed to save past samples and the heuristic used to select which old samples can be removed, for which the computational cost may be high. This can be even harder when the amount of data being handled is large as well as the rate at which changes occur.

In the literature, techniques employed to handle concept drift (and to update models) are commonly studied in categories specific to the domains or the kind of classifiers to which they will be applied. We consider two categories, based on how they are applied to spam filters.

The first category, which we will refer as instance-based update, are those requiring that old samples, or at least a summary of each sample shall be available when the model will be updated. Forgetting old samples consists in just removing them from the training data set. A trivial example of this kind of solution is the use of a fixed size sliding time window ending just before the current date.

The second category, which we will refer as incremental update, are those for which each new sample is used to update the parameters of the model and is discarded just after. This is the kind of solution usually found in spam filters, even if not all classifiers are well suited for this.

Although, in theory, all new examples should be used to update the model, in practice it’s common that only some are used. Most of the time it’s impossible to have the correct label for each example, and sometimes it shall be considered that this feedback will be available for only one class. This happens in both situations described below.

2.1 Instance-based update

The first approach raises naturally from instance-based classifiers (sometimes referred to as “lazy learners”), where all examples may explicitly be used during the classification process [22] or to update the model when it was detected that the model changed. Within this approach, the learning process maintains all samples (or a summary of them) inside a time window of fixed or variable size. The learning process evolves moving the window forward, adding new messages to the front and removing old ones from the tail. Although this approach isn’t limited to instance-based classifiers, we will refer to it as instance-based training, as it shall store and individually access each sample in order to remove older ones from the training set.

Using this approach, Cunningham [10] retrain a nearest neighbour classifier when the accuracy falls below some predefined level. Fernandes-Riverola et al [13] use feature selection to select which samples to remove or to maintain and to update the window size. Hsiao [17] detects changes inside clusters to decide when to update them. Delany et al [11] uses a case based classifier (lazy learner): only misclassified messages are added to the data set and a periodic retraining is done to remove less relevant samples.

One advantage usually mentioned by defenders of instance-based training approach is the ability to detect and adapt to local changes inside classes. On the other hand, the storage place needed to save all examples may be important. Also, if adding new samples may be trivial, unless using a simple fixed size time window, deciding which old samples can be removed may not be the same, particularly on large training sets.

2.2 Incremental update

In the opposite approach, incremental update, samples are presented sequentially for training and are discarded just after use. The goal is to eliminate the need of saving all past examples.

When doing active learning, the classifier is allowed to ask the label a sub set of the messages submitted to the classifier. Messages for which the real label will be asked may be chosen randomly or based on some criteria, e.g., messages for which the assigned score is close to the classification threshold [21][20].

Most open-source filters use some variant of “Train on Errors”, “Train Until No Errors” or “Train on Everything”. Bogofilter[19], an open source “Bayesian” spam filter, expires features (not examples containing these features) which weren’t seen after some time. It’s not clear that models updated with these approaches don’t degenerate after some time, as it hasn’t been shown that these approaches converge to the real models. Sculley [20] showed that some classifiers, updated with the “Train Until No Error” approach (repeat submitting the same misclassified sample until the classification is correct), present over-fitting and may be easily broken by noise.

2.3 Effects of concept drift

Although there had been many research work to find efficient ways to solve the concept drift problem, at our knowledge, very few research were done to evaluate the consequences of the drift itself when models aren’t updated. Some limited results can be found in [11], but the methodology seems specific to the kind of classifiers being evaluated.

Examples of questions which remain without answer are: how does concept drift affects classification errors, at which class concept drift is more important or which characteristics of messages, other than the content itself, can mitigate these effects.

3. Objectives

Our main objective is to investigate the influence of concept drift in spam filter effectiveness. So, we’re interested to identify the class for which concept drift is more important and if the two approaches to handle concept drift result in completely different effectiveness. A secondary objective is to understand at what extent a spam filter can be used, without being updated, to filter recent messages with an “acceptable” effectiveness.

The first two series of experiments try to simulate the two approaches, described in the previous section, used to update the email stream model. With these experiments we also try to identify some points which can help to mitigate the effect of concept drift in spam filtering. The last series of experiments was done to investigate at which part of email (headers or body), concept drift is more important. These objectives are described below.

- **Temporal References** - temporal references are always present in email messages: most of them inside headers and sometimes in the body. Cormack and Lynam
[8] suggested how some of them appear inside messages. In fact, the big picture here is the identification of features which will deviate the classifier from the originally intended targets: “old and recent messages” instead of “hams and spams”. If their effect isn’t negligible, it become necessary to identify these features and elide them to minimize their influence on the remaining experiments. This change in the classification target was discovered during our preliminary experiments and, given its importance, we decide to included them in the whole picture.

- **Instance-based update** - effectiveness of mail filtering is supposed to degenerate with the age of samples used to train the filter. With this series of experiments we examine the situation where, after an initial training, the filter is employed during some time without updating the training data. This situation is compared to one side training with replacement: only one class of training data sets is updated using a constant size time window (recent messages are added while old ones are removed) and is equivalent to a trivial instance-based update, described above.

- **Incremental update** - Investigate the effect of samples age when doing one-side or both sides incremental update. While in the previous objective old messages are replaced by new ones, we’ll just add new messages to the training set. We’re interested in the comparison of situations where both classes are updated, only one is updated and none of them are updated.

- **Whole message, headers and body** - The information present in the headers and in the body of messages aren’t of the same nature. Information inside headers are mostly related to the way the message was created and to its path from the sender to the recipient. The body of the message contains, most of the time, the real message payload, but may also include some meta-information, like attached files, or HTML code. Given this difference, it’s interesting to investigate if the influence of the age of samples is the same in both parts.

4. EXPERIMENTAL SET UP

4.1 Data Sets

To realize these experiments we used two private corpus of messages.

The first data set (MrX) contains 160,000 messages (8017 hams; 151,983 spams) addressed to one email recipient over the course of about eight months. This data set was mainly used as a guide and to confirm behaviours found in the second data set. We split the messages by delivery date into 8 equal sets, numbered from the most recent (0) to oldest (7), each representing about a month. 0 was used as the test set. MrX is the private corpus used at TREC experiments.

The second data set (MrJ) contains messages collected over the course of 11 months (exactly 330 days). Messages from the last 30 days (22645 messages: 17250 spams and 151,983 hams) were used as test set and numbered as set 0. Messages from the first 300 days (184539 messages: 118275 spams and 66264 hams) were split in 20 equal sets covering 15 days each and used to train the filter.

![Figure 1](http://www.washingtonpost.com/wp-dyn/content/article/2008/11/12/AR2008111200658.html)

Figure 1: Amount of messages received each day in MrJ corpus. This experiments took messages from day 0 to 330.

Figure 1 presents the amount of messages (spams and hams) each day. Messages utilised in this experiment are those from day 0 to day 330. The abrupt drop in the number of spams corresponds to the the McColo shutdown 1. This figure already shows how the number of messages, for each class, may change with time and the class priors. As it will be seen, the classifier takes this into account, to mitigate the unbalance on the ratio ham/spam and the evolving number of messages.

MrX and MrJ corpora come from different continents, from countries with different official languages: English for MrX and French for MrJ. MrJ mailbox is a mix of messages in French and English. Also, the ratio ham/spam isn’t the same in both corpus. MrJ subscribes to a lot of newsletters and discussion lists.

4.2 Manipulating messages

For these experiments, we used an elementary window of size 1 month. While MrX corpus was split in sets of size 1 month, MrJ was split in sets of size 15 days: 2 sets shall be combined to create a month of messages, but time references can be moved in 15 days steps instead of a month, resulting in more points of measure.

The basic window size (1 month) was chosen empirically. This size should be big enough, so the classifier effectiveness will be not too far from its nominal value. On the other hand, when using small sizes results may be cluttered by high frequency noise and when using big sizes results can be oversmooth, hiding interesting behaviours.

The test set is always the same - the most recent month: set 0 for both MrX and MrJ corpora. Doing our experiments this way allowed us to compare results evaluated on the same test set, when experimental parameters are changed. In a more understandable way, we can say: “instead of investigating what could happen in the future if we do this now, we're investigating what could it be now if we've done that in the past”.

In each run, the most recent month just before the test set is used as reference training set, corresponding to new ham and new spam. Remaining older sets are used to measure

1McColo - http://www.washingtonpost.com/wp-dyn/content/article/2008/11/12/AR2008111200658.html
4.3 Classifiers

All experiments were done with an adaptive logistic regression filter [15]. This is the same filter which participated at TREC 2007 spam track [4].

Parameters used by the classifier are evaluated during learning using a sequential gradient descent algorithm. The features used by the classifier are 4-grams found in the first 3500 characters of each message.

Since its participation in TREC 2007, the filter was modified to compensate the unbalance in the amount of samples of hams and spams: an equal number of messages of each class is used to train the filter with alternation of classes. This removes the effects of ham/spam priors changing over time.

This is a soft classifier which outputs a real number score (the odds of being a spam). This score is used to draw the ROC (Receiver Operating Characteristic) of the classifier. Spam/ham classification is done using the neutral value as threshold.

4.4 Effectiveness evaluation methodology

We basically employed the same methodology of TREC Spam Tracks [9], with its companion toolkit [7].

The TREC toolkit was designed to evaluate the effectiveness of a filter on a single run. In our research, we basically needed to evaluate and compare multiple runs of the classifier applied to the same test set but with different training sets. Training sets are built from the same corpus of messages using a temporal criteria (start and end time). This criteria can be different for each class and for each experiment. Results from each run are saved in such a way that it can be handled by the TREC evaluation toolbox [7]. All this logic can be easily programmed and a controller (a perl script) was developed to manage each experiment, in order to assure homogeneity and reproducibility of experiments.

TREC toolkit outputs a number of figures of merit allowing one to evaluate and compare classifiers. Two metrics usually employed to evaluate filters are the spam and ham misclassification rates (smr and hmr, respectively) [9], which are the fraction of misclassified spams and hams. Both values are interesting, but they are specific to each class and are tied to a specific threshold. Logistic Average Misclassification (LAM), is a mean of these values evaluated using the log odds of misclassification rates - it’s also tied to the threshold used to evaluate hmr and smr.

The effectiveness metrics which interests us is the 1-AUC% (Area Under Curve) [9], as it gives a global measure of the classifier effectiveness independently of some predefined threshold. This metrics is derived from ROC (Receiver Operating Characteristics). The smaller the value of 1-AUC, the better the classifier effectiveness. Typical values for modern spam classifiers are inferior to 0.1%.

Although we’re using the 1-AUC to globally evaluate the classifier, we use hmr and smr as control parameters to verify that, for each class, the specific filter effectiveness isn’t deviating too much from its operating point. Other than hmr and smr, the TREC toolkit outputs the confidence intervals for each measure.

5. EXPERIMENTS AND RESULTS

The experiments were organized in three parts. The first one is intended to investigate the effect of using old samples and samples of different ages to classify recent messages and the influence of explicit temporal references found in messages. The second part is intended to investigate the effectiveness of incrementally updating the training data. The last part is intended to verify which part of messages are more sensitive to the age of samples used to classify recent messages.

5.1 Instance based-update (effect of age and of relative age of ham and spam samples)

Effects of age and relative age of samples were investigated with three series of experiments reproducing, at some extent, the instance-based training, with a fixed size sliding window being used to select samples to train the classifier.

1. Old Ham - Old Spam: The most recent month of sample messages (sets 1 and 2 of MrJ corpus and set 1 of MrX corpus) was used as baseline as training set to classify messages of the test set. This experiment was repeated progressively aging the samples of both classes, in steps of 15 days for MrJ and 1 month for MrX (using a sliding window of size one month). This experiment approximates the situation where the filter is initially trained and used to classify messages during some time without retraining.

2. Old ham - New spam: This series of experiments is similar to the above one, but instead of aging both classes, the spam class is held constant (recent samples) and the ham class is progressively aged. This is the situation where the filter is initially trained with hams and spams and and, during some time, only spam samples are renewed (with replacement).

3. New Ham - Old spam: This series of experiments is similar to the above one, but aging the spam class instead of the ham class.

Preliminary experiments [6] with MrX corpus presented two unexpected behaviours: the filter error (1-AUC%) increased faster when aging only one class (no matter which one) than when aging both classes (figure 2) and the error rate presented an unexpected discontinuity around the year boundary (figure 3), exploding after that point.

Table 1: Temporal cues of the sort illustrated here were identified and elided using the spam filter to distinguish new messages from old, instead of spam from ham.

<table>
<thead>
<tr>
<th>cue</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>header date</td>
<td>Mon, 4 Dec 2006 13:21:34</td>
</tr>
<tr>
<td>reply date</td>
<td>On Tue, 31 Mar 2009, Joe Denver wrote:</td>
</tr>
<tr>
<td>daylight time</td>
<td>-0400 (EDT)</td>
</tr>
<tr>
<td>server hostname</td>
<td>by mail1.institution.net</td>
</tr>
<tr>
<td>server config</td>
<td>(8.13.1/8.13.1)</td>
</tr>
<tr>
<td>generated ID</td>
<td>01C7178F.000D1CD0</td>
</tr>
<tr>
<td>seasonal reference</td>
<td>thanks for making 2006 a great year</td>
</tr>
</tbody>
</table>
Figure 2: Effect of old and new training samples on filter error (MrX). The origin of each curve represents training on the most recent ham and spam available. The three curves represent: substituting progressively older ham, progressively older spam, and progressively older ham and spam of the same age.

Figure 3: Separate ham and spam error rates training with progressively older ham and new spam. Spam error rate vanishes while ham error rate increases dramatically, even for 1- and 2-month-old ham.

Figure 4: Effect of removing email headers (MrX). Overall error is increased tenfold but the effect of age disparity between training examples disappears.

Figure 5: Effect of eliding features to mitigate temporal effects (MrX). Effectiveness on new training sample is restored to that of Figure 2 while the effect of age disparity disappears.

Figure 2 shows the filter error, expressed as $1 - AUC$ (the area above the receiver operating characteristic curve), for all combinations of training sets. Baseline error is $1 - AUC = 0.02\%$, increasing to 0.2\% and 0.1\% for sets 6 and 7, respectively. Substituting new ham or new spam substantially degrades performance, a result that is on the surface surprising as the average age of the training examples is decreased. Figure 3 provides further insight into this phenomenon: as progressively older ham is combined with new spam, the ham error rate explodes, while the spam error rate vanishes. The complementary effect (not shown) is observed when older spam is combined with new ham. The filter is learning to recognize new messages, not spam.

We posit that the features used to recognize new messages are contained largely in the message headers, which contain explicit time-stamp information. The results obtained from removing the headers altogether, shown in figure 4, support this theory by virtue of the fact that the mixtures of new and older training messages outperform strictly older messages. But overall performance is degraded by nearly a factor of ten. Clearly the header is of critical importance to the filter and removing it is not a step toward improved effectiveness.

We therefore investigate the approach of eliding only datespecific information in the header. Eliding explicit dates alone, as shown in the first line of table 1, yields no measurable benefit. But when the other cues shown in 1 are elided, filter effectiveness on new training data is as good as the baseline and on mixed-age training data is improved dramatically (figure 5). In particular, old spam and new ham works nearly as well as new spam and new ham, and much better than old spam and old ham.

The temporal cues were discovered with the aid of the spam filter itself, trained to classify messages as new (belonging to set 1) or old (belonging to set 7) rather than as spam or ham. Once the most discriminative features were identified, it was not difficult to write ad hoc scripts to eliminate them from the header. Table 1 is a complete list of the sorts of cues we found: inappropriate use of daylight saving time, server hostnames and software that were reconfigured over time, timestamp-derived message IDs and MIME delimiters and dates found in the body of replies.
We repeated these experiments with MrJ messages using smaller time steps (15 days instead of 1 month). Previous temporal cues found in MrX corpus were removed, but we found another temporal cue: dates in the body of replies (“On Tue, 31 Mar 2009, Joe Denver wrote:”).

Results of these series of runs are shown in figures 6, 7 and 8. Global error rate (1-AUC% - figure 6) degenerates from ~0.015% to 0.025%, with 0.95% confidence interval almost constant with lower and higher limits at 0.005% and 0.05%. This loss is much less important than for MrX corpus. When aging only one class, the misclassification rate (figures 7 and 8) degenerates in the class being aged. Interpreting this result as instance-based update gives: if one retrain only one class, the misclassification rate of the opposite class degenerates.

However, global error (1-AUC%) results from MrX and MrJ corpus present one qualitative difference: for MrX corpus aging both hams and spams is the worst situation (figure 5), while for MrJ, old spam with new ham is worse during a large time interval (figure 6).

One plausible hypothesis to explain this is the possible existence of some residual temporal reference, which can merely be virtual instead of the explicit ones found before. An example of virtual references is a burst of messages (either ham or spam) mentioning events widely known and appearing at some particular dates, such as the recent U.S. presidential election which was a theme for a recent spam campaign. As long as the effect of these references on the filter effectiveness is limited, it may be difficult to identify and remove them, as we’ve done before. At some point we shall accept that trying to removing all temporal references may be unrealistic and they may be considered as part of noise.

Another abnormal behaviour we can notice is the abrupt increase in the ham misclassification rate when only the spam class is aged (figure 7). Investigating the reason of the errors in the last run, we’ve found that 26 of the 60 misclassified messages come from a number or newsletters (New York Times, CBS, CNN and Foxnews). This set corresponds to the month when the recipient subscribed to those newsletters, and these messages are atypical when compared to most messages in MrJ corpus. If these errors are discarded, the error rate falls down to a more plausible value. This is another kind of virtual temporal reference which can appear on corpus of messages.

5.2 Incremental update

The goal of this series of experiments is to investigate the effect of incremental update: the classifier is initially trained with recent messages of both classes and used, during some time, to classify messages. During this period the model is incrementally updated. We ran four series of experiments:

1. No training - This is the reference to be compared with the three other in this series. The classifier is initially trained with one month of recent messages and used to classify recent messages for some months without training. This is the same as the “old ham - old spam” experiment above.

2. Full training - This is the same as above, but the training data is incrementally updated (without removing

3. One side spam training - only spams are used to incrementally update the training data - the sliding window of spam class is updated as above, and the sliding window of ham class is moved back with constant size.

4. One side ham training - only hams are used to incrementally update the training data - same as above, but classes are reversed.

This experiment is similar to the previous one. But model update is done simply by adding new samples, without removing old ones as it was done before.

Global filter error results (1-AUC%), displayed in figure 9, show that filter effectiveness is better when incremental update is done on both classes than when done on a single class, which is better than no training at all. But when doing one-side updating effectiveness degenerates less when updating spam class than ham class.

The expected result for specific class errors (figures 10 and 11) is that incremental update on both classes improve error rate on both classes. On the other hand, one side training improves the error rate of the class being trained but degenerates that one of the other class.

5.3 Whole message, headers only or body only

To investigate at which parts of messages the age has stronger influence on filter effectiveness, we run a series of experiments, like those used to investigate the effect of samples age, but on four types of objects: whole message without removing temporal cues, whole messages with temporal cues removed, headers only and body only.

Filter errors, expressed as 1-AUC% (figure 12), shows that using the whole message gives the best results, using headers only comes just behind. Using body only is the worst.

This result suggests that message body changes faster than headers. The reason is out of the scope of this paper as more data is needed, but a plausible explanation is related to their nature. Message body is the container of useful information, while headers contain meta-data, and old messages) with data from both classes. The size of the sliding window grows with time - pushing back the start date and holding constant the ending date.
most of them are related to how the message was created and the path till the recipient mailbox. Although spammers change the visual and semantics of messages to elude content filters, the way these messages is usually distributed (network of botnets) doesn’t change too much. The intrinsic kind of information available in each part isn’t the same. If this hypothesis could be confirmed, it may suggest that it may be interesting to combine results from two classifiers, the first working mainly on headers and the other on the body.

When the classifier uses only the body of messages, results are much worse for MrX corpus (figure 4: 1-AUC% jumps up from 0.6% to 1.7%) than for MrJ corpus (figure 12: 1-AUC% jumps up from 0.02% to 0.1%). Using recent messages, MrX global error (1-AUC%) increases from 0.02% to 0.6%, while global error for MrJ increases just from 0.015% to 0.02%. A plausible explanation, which needs to be confirmed with more research, come from the fact that dominant language in MrX ham corpus is English, while it’s a mix of English and French for MrJ. Most of the spams are in English, so it’s possible that the dominant language in legitimate messages is relevant to the filter efficiency when using only the body contents for classification. This is another possible point of change in class target (classifying the language instead of the nature of messages), similar to the one we found before. Headers content is neutral with a very weak dependency on the language used in the body of the message. Again, this is a vast research subject out of the scope of this paper, which needs to be investigated.

6. DISCUSSION

Although this research is about temporal behaviour of email classification, all along this work we’ve implicitly supposed that the message generation is, at some extent, a stationary random process, which obviously isn’t true. So, we shall try to understand the limitations of our work.

The first point of importance is the duration of our experiment: between 8 and 12 months. We’ve shown that, during the dates of our experiments, it was plausible to use old samples to classify recent messages, provided some necessary preprocessing was done (removal of temporal references). In other situations, this period may be longer or shorter, provided qualitative changes in the nature of messages are limited. The origin of these changes may be internal (e.g., organizational) or external (a big spammer ceasing its activity).

Another point of interest is the size of the sliding window used in our experiments: one month, empirically chosen. It shall be big enough to make the classifier work near a region of good effectiveness. On the other hand, its size shouldn’t be nor too small (to have enough messages to learn and avoid spurious high frequency noise) nor too big (to avoid over-smooth hiding interesting behaviors). Both requirements depend on the kind of classifier being studied.

In MrJ corpus, we can see that the ratio ham/spam increased from roughly 1:1 to 1:8 (figure 1) during the period of our experiment. To compensate this, we had two options: using a variable size window or using the natural capability of the classifier to compensate unbalanced class priors. The latter seemed less complex to implement and there is no evidence that the former was more realistic.

We’ve done all experiments with one classifier (a logistic regression classifier), even if other kind of classifiers were available. Different classifiers have different learning rates. So, the time dimension may not have the same scale for different classifiers. Also, it seems to us that generative classifiers, like Naive Bayes, may behave differently. It may be interesting to redo all experiments we’ve done with other kind of classifiers.

A hidden, and not enough explored, result in this experiment is the influence of the dominant language in the legitimate mailbox. The subtlety of some differences between the two corpora suggests that the lingual composition each class is an aspect which deserves a deeper investigation.

Another interesting research direction concerns a corpus with samples from many recipients instead of a single one. This is a step forward sharing classifiers models to filter spams for a group of users.

The natural choice for experimenting with a group of recipients could be the Enron data created by TREC spam track. We’ve done some preliminary experiments with it, but it seemed to us that although this corpus was fine for classifiers evaluation, it was quite atypical for the evaluation of the temporal effects we were interested in. In particular, an important virtual temporal reference appears in messages from October 2001 (see table 2), represented, at the same moment, by the bankrupt and the huge increase in the amount of messages.

<table>
<thead>
<tr>
<th>Table 2: Distribution of messages in Enron Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Aug 2001</td>
</tr>
<tr>
<td>Sep 2001</td>
</tr>
<tr>
<td>Oct 2001</td>
</tr>
<tr>
<td>Nov 2001</td>
</tr>
<tr>
<td>Dec 2001</td>
</tr>
<tr>
<td>Jan 2002</td>
</tr>
</tbody>
</table>

7. CONCLUSIONS

It has been usually assumed that characteristics of email, and mainly spam, change substantially over time and spam filters shall absolutely be continuously retrained. Most people don’t change the way they usually write legitimate messages so changes in ham mailboxes come most of the time from context changes: someone begins to work on a new project or subscribes to some unusual newsletters. Spam content changes continually and results from the “arms race” between spammers and and filter developers.

The use of old training data degrades performance, but not nearly so much as the use of raw training data in which the ham and spam have different ages.

Our experiments showed that if temporal references are removed, training data of mixed age may provide improved performance in the situation where only new ham or new spam is available. Header removal is too radical as it dramatically compromises overall performance. If a few tell-tale temporal cues are identified and elided, substituting never training data for one class of messages appears to yield improved effectiveness over using old for both. Our approach to identifying the training cues was not entirely automatic, and not entirely blind to the training data (but definitely blind to the test data). We believe it is a good candidate to be automated. And even if effected manually, it is much more efficient than labeling a new training set. The cues we
discovered closely match those mentioned by the authors of the TREC 2005 Spam Corpus [8].

Experiments with MrX corpus (figure 5) had shown that, for this particular corpus, using old ham is worse than using old spam, while the same experiment with MrJ corpus (figure 6) doesn’t present a so noticeable difference. On the other hand, for both corpora, when both hams and spams are aged together, effectiveness doesn’t change too much.

We can’t generalize our results, as our experiments were done with only one kind of classifier (logistic regression), and only two corpora (MrX and MrJ), but it seems to us that, provided some preprocessing is done in training data such as removal of temporal references, it’s possible to use old samples or mix samples of different ages with limited effectiveness loss.

We also have shown that incremental update, on both classes ham and spam, may improve effectiveness but single-sided incremental update degrades the misclassification rate on the opposite class. However endless incremental update can eventually generate an overfitted model ([16] p. 194), mainly on classifiers unable to forget less recent samples.

These results aren’t completely surprising and, at some extent, they confirm assumptions which are usually accepted without being verified experimentally. On the other hand, the few experiments we’ve done with only two different corpora had shown that it may not be surprising to get some qualitatively different results in different contexts. (e.g. the degeneration with age we noticed when using only the body of messages).

These experiments also raised some questions which remain unanswered and deserves some more deeper research with other corpora and other classifiers.

To conclude, it seems to us that a better understanding of data being handled by spam classifiers, and the context, may improve the effectiveness of spam filters.

References

