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ABSTRACT
Email spam filters are commonly trained on a sample of re-
cent spam and ham (non-spam) messages. We investigate
the effect on filter performance of using samples of spam and
ham messages sent months before those to be filtered. Our
results show that filter performance deteriorates with the
overall age of spam and ham samples, but at different rates.
Spam and ham samples of different ages may be mixed to
advantage, provided temporal cues are elided. The experi-
ments on both corpora show that performance deteriorates
faster when using only the body of messages than when us-
ing the whole message or headers only.

1. INTRODUCTION
Spam filters are commonly trained on historical collections

of messages, each labeled as spam or ham (non-spam). Their
theory of operation assumes that these training messages are
a random sample of those to be filtered; an assumption that
is clearly not true because, when the filter is trained, the
set of messages to be filtered exists only in the future. It is
known that future messages are best approximated by recent
messages [5].

Under the assumption that models built with recent sam-
ples best represent what future objects will be, models should
be continuously updated, including new samples and forget-
ting old ones. Over time, models may become inadequate
for several reasons : class priors can change over time or un-
derlining changes can happen on the nature of objects being
studied.

However, acquiring and labeling recent messages may be
impractical, and they may not be plentiful enough for ad-
equate training. Sometimes, it may be more practical to
acquire recent examples of one class than the other; for ex-
ample, spam from a spam trap or ham from the client inter-
face. Also, when filtering messages for a group of recipients,
it may be difficult to continuously update the ham data set
and it could be desirable to train the filter with a convenient
initial data set of hams and spams and, over time, to pre-
serve the initial ham data set and renew only the spam data
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set.
In this paper we present some experiments we’ve done in

order to understand what happens to the effectiveness of a
filter being used in conditions which aren’t ideal: less-than
recent training samples or samples having different ages.
Also, we’re more interested in understanding qualitative be-
haviours than absolute values of effectiveness, as the latter
depends heavily on the kind of classifier being used and on
the context.

This paper is organized as follows. Section 2 recalls some
relevant research on how to update models used by classifiers
to solve the concept drift problem in spam filters. Section 3
presents the objectives of our this paper. Section 4 presents
the environment in which we’ve done our experiments. In
section 5 we describe our experiments and present results.
And finally sections 6 and 7 presents some discussion and
conclusions.

2. RELATED WORK
It’s usually accepted that email characteristics change over

time [12]. While it can be assumed that people don’t change
frequently the way they write legitimate messages (hams),
spam evolves for different reasons. The amount of spam
changes to reflect spam activity[12], so class priors change
accordingly. Spam filtering can be seen as an adversarial
game [18] where the strategy of each part changes over the
time : spam content change as spammers want to deceive
spam filters (generating false negatives) and spam filters
change to adapt to the changes in spam content.

It has been shown that spam filter evaluation is more ac-
curate when using an on-line model, where messages are
submitted in chronological order, than with a batch model
where order is irrelevant [5]. This reflects the time depen-
dency of email.

Changes in class (target) priors may be simpler to handle,
as they may be observed directly. Changes appearing in
hidden concepts [22], may be much harder to detect and may
even be confounded with noise, as these changes can’t be
correlated to any directly measurable parameter. Changes
in hidden concepts is usually referred as concept drift [22].

Machine learning techniques are applied to many domains
handling non-stationary streams of data. Research in these
domains is very active and probably even more than in the
spam filtering domain. Data Mining research is intended to
identify and acquire information from streams of data [14]
or even simply to detect when changes occur and the speed
of change [1][3]. Clustering [2] and On-line Classification
[23] of non-stationary data streams are domains nearer our



spam filtering problem.
The canonical solution implies that all past relevant sam-

ples shall be available and some method exists to integrate
new samples to the current model and to forget the oldest
or less useful ones. The two hard points of this approach
are the storage space needed to save past samples and the
heuristic used to select which old samples can be removed,
for which the computational cost may be high. This can be
even harder when the amount of data being handled is large
as well as the rate at which changes occur.

In the literature, techniques employed to handle concept
drift (and to update models) are commonly studied in cat-
egories specific to the domains or the kind of classifiers to
which they will be applied. We consider two categories,
based on how they are applied to spam filters.

The first category, which we will refer as instance-based
update, are those requiring that old samples, or at least a
summary of each sample shall be available when the model
will be updated. Forgetting old samples consists in just
removing them from the training data set. A trivial example
of this kind of solution is the use of a fixed size sliding time
window ending just before the current date.

The second category, which we will refer as incremental
update, are those for which each new sample is used to up-
date the parameters of the model and is discarded just after.
This is the kind of solution usually found in spam filters,
even if not all classifiers are well suited for this.

Although, in theory, all new examples should be used to
update the model, in practice it’s common that only some
are used. Most of the time it’s impossible to have the correct
label for each example, and sometimes it shall be considered
that this feedback will be available for only one class. This
happens in both situations described below.

2.1 Instance-based update
The first approach raises naturally from instance-based

classifiers (sometimes referred to as “lazy learners”), where
all examples may explicitly be used during the classification
process [22] or to update the model when it was detected
that the model changed. Within this approach, the learning
process maintains all samples (or a summary of them) inside
a time window of fixed or variable size. The learning process
evolves moving the window forward, adding new messages
to the front and removing old ones from the tail. Although
this approach isn’t limited to instance-based classifiers, we
will refer to it as instance-based training, as it shall store and
individually access each sample in order to remove older ones
from the training set.

Using this approach, Cunningham [10] retrain a nearest
neighbour classifier when the accuracy falls below some pre-
defined level. Fernandes-Riverola et all [13] use feature se-
lection to select which samples to remove or to maintain and
to update the window size. Hsiao [17] detects changes inside
clusters to decide when to update them. Delany et all [11]
uses a case based classifier (lazy learner) : only misclassified
messages are added to the data set and a periodic retraining
is done to remove less relevant samples.

One advantage usually mentioned by defenders of instance-
based training approach is the ability to detect and adapt to
local changes inside classes. On the other hand, the storage
place needed to save all examples may be important. Also,
if adding new samples may be trivial, unless using a simple
fixed size time window, deciding which old samples can be

removed may not be the same, particularly on large training
sets.

2.2 Incremental update
In the opposite approach, incremental update, samples are

presented sequentially for training and are discarded just
after use. The goal is to eliminate the need of saving all
past examples.

When doing active learning, the classifier is allowed to ask
the label a sub set of the messages submitted to the classi-
fier. Messages for which the real label will be asked may be
chosen randomly or based on some criteria, e.g., messages for
which the assigned score is close to the classification thresh-
old [21][20].

Most open-source filters use some variant of “Train on
Errors”, “Train Until No Errors” or “Train on Everything”.
Bogofilter[19], an open source “Bayesian” spam filter, ex-
pires features (not examples containing these features) which
weren’t seen after some time. It’s not clear that models up-
dated with these approaches don’t degenerate after some
time, as it hasn’t be shown that these approaches converge
to the real models. Sculley[20] showed that some classifiers,
updated with the “Train Until No Error” approach (repeat
submitting the same misclassified sample until the classi-
fication is correct), present over-fitting and may be easily
broken by noise.

Goodman and Yih [15] use sequential gradient descent
in an adaptive logistic regression classifier to do sequential
learning, eliminating some drawbacks of previous solutions.

2.3 Effects of concept drift
Although there had been many research work to find effi-

cient ways to solve the concept drift problem, at our knowl-
edge, very few research were done to evaluate the conse-
quences of the drift itself when models aren’t updated. Some
limited results can be found in [11], but the methodology
seems specific to the kind of classifiers being evaluated.

Examples of questions which remain without answer are :
how does concept drift affects classification errors, at which
class concept drift is more important or which characteristics
of messages, other than the content itself, can mitigate these
effects.

3. OBJECTIVES
Our main objective is to investigate the influence of con-

cept drift in spam filter effectiveness. So, we’re interested
to identify the class for which concept drift is more impor-
tant and if the two approaches to handle concept drift result
in completely different effectiveness. A secondary objective
is to understand at what extent a spam filter can be used,
without being updated, to filter recent messages with an
“acceptable” effectiveness.

The first two series of experiments try to simulate the
two approaches, described in the previous section, used to
update the email stream model. With these experiments we
also try to identify some points which can help to mitigate
the effect of concept drift in spam filtering. The last series of
experiments was done to investigate at which part of email
(headers or body), concept drift is more important. These
objectives are described below.

• Temporal References - temporal references are always
present in email messages : most of them inside head-
ers and sometimes in the body. Cormack and Lynam



[8] suggested how some of them appear inside mes-
sages. In fact, the big picture here is the identifica-
tion of features which will deviate the classifier from
the originally intended targets : “old and recent mes-
sages” instead of “hams and spams”. If their effect
isn’t negligible, it become necessary to identify these
features and elide them to minimize their influence on
the remaining experiments. This change in the classi-
fication target was discovered during our preliminary
experiments and, given its importance, we decide to
included them in the whole picture.

• Instance-based update - effectiveness of mail filtering is
supposed to degenerate with the age of samples used
to train the filter. With this series of experiments we
examine the situation where, after an initial training,
the filter is employed during some time without updat-
ing the training data. This situation is compared to
one side training with replacement : only one class of
training data sets is updated using a constant size time
window (recent messages are added while old ones are
removed) and is equivalent to a trivial instance-based
update, described above.

• Incremental update - Investigate the effect of samples
age when doing one-side or both sides incremental up-
date. While in the previous objective old messages are
replaced by new ones, we’ll just add new messages to
the training set. We’re interested in the comparison of
situations where both classes are updated, only one is
updated and none of them are updated.

• Whole message, headers and body - The information
present in the headers and in the body of messages
aren’t of the same nature. Information inside headers
are mostly related to the way the message was cre-
ated and to its path from the sender to the recipient.
The body of the message contains, most of the time,
the real message payload, but may also include some
meta-information, like attached files, or HTML code.
Given this difference, it’s interesting to investigate if
the influence of the age of samples is the same in both
parts.

4. EXPERIMENTAL SET UP

4.1 Data Sets
To realize these experiments we used two private corpus

of messages.
The first data set (MrX) contains 160,000 messages (8017

hams; 151.983 spams) addressed to one email recipient over
the course of about eight months. This data set was mainly
used as a guide and to confirm behaviours found in the sec-
ond data set. We split the messages by delivery date into 8
equal sets, numbered from the most recent (0) to oldest (7),
each representing about a month. 0 was used as the test set.
MrX is the private corpus used at TREC experiments.

The second data set (MrJ) contains messages collected
over the course of 11 months (exactly 330 days). Messages
from the last 30 days (22645 messages : 17250 spams and
5395 hams) were used as test set and numbered as set 0.
Messages from the first 300 days (184539 messages : 118275
spams and 66264 hams) were split in 20 equal sets covering
15 days each and used to train the filter.
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Figure 1: Amount of messages received each day in
MrJ corpus. This experiments took messages from
day 0 to 330.

Figure 1 presents the amount of messages (spams and
hams) each day. Messages utilised in this experiment are
those from day 0 to day 330. The abrupt drop in the num-
ber of spams corresponds to the the McColo shutdown 1.
This figure already shows how the number of messages, for
each class, may change with time and the class priors. As
it will be seen, the classifier takes this into account, to miti-
gate the unbalance on the ratio ham/spam and the evolving
number of messages.

MrX and MrJ corpora come from different continents,
from countries with different official languages : english for
MrX and french for MrJ. MrJ mailbox is a mix of messages
in french and english. Also, the ratio ham/spam isn’t the
same in both corpus. MrJ subscribes to a lot of newsletters
and discussion lists.

4.2 Manipulating messages
For these experiments, we used an elementary window of

size 1 month. While MrX corpus was split in sets of size 1
month, MrJ was split in sets of size 15 days : 2 sets shall be
combined to create a month of messages, but time references
can be moved in 15 days steps instead of a month, resulting
in more points of measure.

The basic window size (1 month) was chosen empirically.
This size should be big enough, so the classifier effectiveness
will be not too far from its nominal value. On the other
hand, when using small sizes results may be cluttered by
high frequency noise and when using big sizes results can be
oversmooth, hiding interesting behaviours.

The test set is always the same - the most recent month :
set 0 for both MrX and MrJ corpora. Doing our experiments
this way allowed us to compare results evaluated on the
same test set, when experimental parameters are changed.
In a more understandable way, we can say : “instead of
investigating what could happen in the future if we do this
now, we’re investigating what could it be now if we’ve done
that in the past”.

In each run, the most recent month just before the test set
is used as reference training set, corresponding to new ham
and new spam. Remaining older sets are used to measure

1McColo - http://www.washingtonpost.com/wp-
dyn/content/article/2008/11/12/AR2008111200658.html



the effect of using progressively older training examples. The
way they are combined in the training set depends on the
experiment being done.

Messages were submitted, for training and classification,
in the same chronological order they were delivered to the
recipient mailbox.

4.3 Classifiers
All experiments were done with an adaptive logistic re-

gression filter [15]. This is the same filter which participated
at TREC 2007 spam track [4].

Parameters used by the classifier are evaluated during
learning using a sequential gradient descent algorithm. The
features used by the classifier are 4-grams found in the first
3500 characters of each message.

Since its participation in TREC 2007, the filter was mod-
ified to compensate the unbalance in the amount of samples
of hams and spams : an equal number of messages of each
class is used to train the filter with alternation of classes.
This removes the effects of ham/spam priors changing over
time.

This is a soft classifier which outputs a real number score
(the odds of being a spam). This score is used to draw the
ROC (Receiver Operating Characteristic) of the classifier.
Spam/ham classification is done using the neutral value as
threshold.

4.4 Effectiveness evaluation methodology
We basically employed the same methodology of TREC

Spam Tracks [9], with its companion toolkit[7].
The TREC toolkit was designed to evaluate the effective-

ness of a filter on a single run. In our research, we basically
needed to evaluate and compare multiple runs of the classi-
fier applied to the same test set but with different training
sets. Training sets are built from the same corpus of mes-
sages using a temporal criteria (start and end time). This
criteria can be different for each class and for each experi-
ment. Results from each run are saved in such a way that
it can be handled by the TREC evaluation toolbox [7]. All
this logic can be easily programmed and a controller (a perl
script) was developed to manage each experiment, in order
to assure homogeneity and reproducibility of experiments.

TREC toolkit outputs a number of figures of merit allow-
ing one to evaluate and compare classifiers. Two metrics
usually employed to evaluate filters are the spam and ham
misclassification rates (smr and hmr, respectively) [9], which
are the fraction of misclassified spams and hams. Both val-
ues are interesting, but they are specific to each class and
are tied to a specific threshold. Logistic Average Misclassi-
fication (LAM ), is a mean of these values evaluated using
the log odds of misclassification rates - it’s also tied to the
threshold used to evaluate hmr and smr.

The effectiveness metrics which interests us is the 1-AUC%
(Area Under Curve) [9], as it gives a global measure of
the classifier effectiveness independently of some predefined
threshold. This metrics is derived from ROC (Receiver Op-
erating Characteristics). The smaller the value of 1-AUC,
the better the classifier effectiveness. Typical values for
modern spam classifiers are inferior to 0.1 %.

Although we’re using the 1-AUC to globally evaluate the
classifier, we use hmr and smr as control parameters to ver-
ify that, for each class, the specific filter effectiveness isn’t
deviating too much from its operating point. Other than

Table 1: Temporal cues of the sort illustrated here
were identified and elided using the spam filter to
distinguish new messages from old, instead of spam
from ham.

cue example
header date Mon, 4 Dec 2006 13:21:34
reply date On Tue, 31 Mar 2009, Joe Denver wrote:

daylight time -0400 (EDT)
server hostname by mail1.institution.net
server config. (8.13.1/8.13.1)
generated ID 01C7178F.000D1CD0

seasonal reference thanks for making 2006 a great year

hmr and smr, the TREC toolkit outputs the confidence in-
tervals for each measure.

5. EXPERIMENTS AND RESULTS
The experiments were organized in three parts. The first

one is intended to investigate the effect of using old samples
and samples of different ages to classify recent messages and
the influence of explicit temporal references found in mes-
sages. The second part is intended to investigate the effec-
tiveness of incrementally updating the training data. The
last part is intended to verify which part of messages are
more sensitive to the age of samples used to classify recent
messages.

5.1 Instance based-update (effect of age and
of relative age of ham and spam samples)

Effects of age and relative age of samples were investigated
with three series of experiments reproducing, at some extent,
the instance-based training, with a fixed size sliding window
being used to select samples to train the classifier.

1. Old Ham - Old Spam : The most recent month of
sample messages (sets 1 and 2 of MrJ corpus and set
1 of MrX corpus) was used as baseline as training set
to classify messages of the test set. This experiment
was repeated progressively aging the samples of both
classes, in steps of 15 days for MrJ and 1 month for
MrX (using a sliding window of size one month). This
experiment approximates the situation where the filter
is initially trained and used to classify messages during
some time without retraining.

2. Old ham - New spam : This series of experiments is
similar to the above one, but instead of aging both
classes, the spam class is held constant (recent sam-
ples) and the ham class is progressively aged. This is
the situation where the filter is initially trained with
hams and spams and and, during some time, only spam
samples are renewed (with replacement).

3. New Ham - Old spam : This series of experiments is
similar to the above one, but aging the spam class
instead of the ham class.

Preliminary experiments [6] with MrX corpus presented two
unexpected behaviours : the filter error (1-AUC%) increased
faster when aging only one class (no matter which one) than
when aging both classes (figure 2) and the error rate pre-
sented an unexpected discontinuity around the year bound-
ary (figure3), exploding after that point.
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Figure 2: Effect of old and new training samples
on filter error (MrX). The origin of each curve rep-
resents training on the most recent ham and spam
available. The three curves represent: substituting
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Figure 3: Separate ham and spam error rates train-
ing with progressively older ham and new spam.
Spam error rate vanishes while ham error rate in-
creases dramatically, even for 1- and 2-month-old
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Figure 4: Effect of removing email headers (MrX).
Overall error is increased tenfold but the effect of
age disparity between training examples disappears.
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Figure 5: Effect of eliding features to mitigate tem-
poral effects (MrX). Effectiveness on new training
sample is restored to that of Figure 2 while the ef-
fect of age disparity disappears.

Figure 2 shows the filter error, expressed as 1 − AUC

(the area above the receiver operating characteristic curve),
for all combinations of training sets. Baseline error is 1 −

AUC = 0.02%, increasing to 0.2% and 0.1% for sets 6 and
7, respectively. Substituting new ham or new spam substan-
tially degrades performance, a result that is on the surface
surprising as the average age of the training examples is
decreased. Figure 3 provides further insight into this phe-
nomenon: as progressively older ham is combined with new
spam, the ham error rate explodes, while the spam error rate
vanishes. The complementary effect (not shown) is observed
when older spam is combined with new ham. The filter is
learning to recognize new messages, not spam.

We posit that the features used to recognize new messages
are contained largely in the message headers, which contain
explicit time-stamp information. The results obtained from
removing the headers altogether, shown in figure 4, support
this theory by virtue of the fact that the mixtures of new and
older training messages outperform strictly older messages.
But overall performance is degraded by nearly a factor of
ten. Clearly the header is of critical importance to the filter
and removing it is not a step toward improved effectiveness.

We therefore investigate the approach of eliding only date-
specific information in the header. Eliding explicit dates
alone, as shown in the first line of table 1, yields no mea-
surable benefit. But when the other cues shown in 1 are
elided, filter effectiveness on new training data is as good
as the baseline and on mixed-age training data is improved
dramatically (figure 5). In particular, old spam and new
ham works nearly as well as new spam and new ham, and
much better than old spam and old ham.

The temporal cues were discovered with the aid of the
spam filter itself, trained to classify messages as new (be-
longing to set 1) or old (belonging to set 7) rather than as
spam or ham. Once the most discriminative features were
identified, it was not difficult to write ad hoc scripts to elim-
inate them from the header. Table 1 is a complete list of the
sorts of cues we found: inappropriate use of daylight saving
time, server hostnames and software that were reconfigured
over time, timestamp-derived message IDs and MIME de-
limiters and dates found in the body of replies.
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Figure 8: Effect of mixing old and new training sam-
ples on Spam Misclassification Rate (MrJ)

We repeated these experiments with MrJ messages using
smaller time steps (15 days instead of 1 month). Previous
temporal cues found in MrX corpus were removed, but we
found another temporal cue : dates in the body of replies
(“On Tue, 31 Mar 2009, Joe Denver wrote:”).

Results of these series of runs are shown in figures 6, 7
and 8. Global error rate (1-AUC% - figure 6) degenerates
from ˜ 0.015 % to 0.025%, with 0.95% confidence interval
almost constant with lower and higher limits at 0.005% and
0.05%. This loss is much less important than for MrX cor-
pus. When aging only one class, the misclassification rate
(figures 7 and 8) degenerates in the class being aged. In-
terpreting this result as instance-based update gives : if one
retrain only one class, the misclassification rate of the op-
posite class degenerates.

However, global error (1-AUC%) results from MrX and
MrJ corpus present one qualitative difference : for MrX cor-
pus aging both hams and spams is the worst situation (figure
5), while for MrJ, old spam with new ham is worse during
a large time interval (figure 6).

One plausible hypothesis to explain this is the possible
existence of some residual temporal reference, which can
merely be virtual instead of the explicit ones found before.
An example of virtual references is a burst of messages (ei-
ther ham or spam) mentioning events widely known and
appearing at some particular dates, such as the recent U.S.
presidential election which was a theme for a recent spam
campaign 2. As long as the effect of this references on the
filter effectiveness is limited, it may be difficult to identify
and remove them, as we’ve done before. At some point we
shall accept that trying to removing all temporal references
may be unrealistic and they may be considered as part of
noise.

Another abnormal behaviour we can notice is the abrupt
increase in the ham misclassification rate when only the
spam class is aged (figure 7). Investigating the reason of
the errors in the last run, we’ve found that 26 of the 60
misclassified messages come from a number or newsletters
(New York Times, CBS, CNN and Foxnews). This set corre-
sponds to the month when the recipient subscribed to those
newsletters, and these messages are atypical when compared
to most messages in MrJ corpus. If these errors are dis-
carded, the error rate falls down to a more plausible value.
This is another kind of virtual temporal reference which can
appear on corpus of messages.

5.2 Incremental update
The goal of this series of experiments is to investigate the

effect of incremental update : the classifier is initially trained
with recent messages of both classes and used, during some
time, to classify messages. During this period the model is
incrementally updated. We ran four series of experiments :

1. No training - This is the reference to be compared with
the three other in this series. The classifier is initially
trained with one month of recent messages and used
to classify recent messages for some months without
training. This is the same as the “old ham - old spam”
experiment above.

2. Full training - This is the same as above, but the train-
ing data is incrementally updated (without removing

2http://www.networkworld.com/news/2008/110508-
obama-spam.html?fsrc=netflash-rss
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Figure 10: Effect of incremental update on ham mis-
classification rate - one-side training on spams is the
less favorable
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Figure 11: Effect of incremental update on spam
misclassification rate - one-side training on hams is
the less favorable
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Figure 12: Effect on filter effectiveness when using
the whole message, headers only or body only. Ef-
fectiveness is worse when using body only

old messages) with data from both classes. The size
of the sliding window grows with time - pushing back
the start date and holding constant the ending date.

3. One side spam training - only spams are used to incre-
mentally update the training data - the sliding window
of spam class is updated as above, and the sliding win-
dow of ham class is moved back with constant size.

4. One side ham training - only hams are used to incre-
mentally update the training data - same as above, but
classes are reversed.

This experiment is similar to the previous one. But model
update is done simply by adding new samples, without re-
moving old ones as it was done before.

Global filter error results (1-AUC%), displayed in figure
9, show that filter effectiveness is better when incremental
update is done on both classes than when done on a single
class, which is better than no training at all. But when
doing one-side updating effectiveness degenerates less when
updating spam class than ham class.

The expected result for specific class errors (figures 10
and 11) is that incremental update on both classes improve
error rate on both classes. On the other hand, one side
training improves the error rate of the class being trained
but degenerates that one of the other class.

5.3 Whole message, headers only or body only
To investigate at which parts of messages the age has

stronger influence on filter effectiveness, we run a series of
experiments, like those used to investigate the effect of sam-
ples age, but on four types of objects : whole message with-
out removing temporal cues, whole messages with temporal
cues removed, headers only and body only.

Filter errors, expressed as 1-AUC% (figure 12), shows that
using the whole message gives the best results, using headers
only comes just behind. Using body only is the worst.

This result suggests that message body changes faster
than headers. The reason is out of the scope of this pa-
per as more data is needed, but a plausible explanation is
related to their nature. Message body is the container of
useful information, while headers contain meta-data, and



most of them are related to how the message was created
and the path till the recipient mailbox. Although spammers
change the visual and semantics of messages to elude con-
tent filters, the way these messages is usually distributed
(network of botnets) doesn’t change too much. The intrin-
sic kind of information available in each part isn’t the same.
If this hypothesis could be confirmed, it may suggest that it
may be interesting to combine results from two classifiers,
the first working mainly on headers and the other on the
body.

When the classifier uses only the body of messages, re-
sults are much worse for MrX corpus (figure 4 : 1-AUC%
jumps up from 0.6% to 1.7%) than for MrJ corpus (figure
12 : 1-AUC% jumps up from 0.02% to 0.1%). Using re-
cent messages, MrX global error (1-AUC%) increases from
0.02% to 0.6%, while global error for MrJ increases just from
0.015% to 0.02%. A plausible explanation, which needs to
be confirmed with more research, come from the fact that
dominant language in MrX ham corpus is english, while it’s
a mix of english and french for MrJ. Most of the spams are
in english, so it’s possible that the dominant language in
legitimate messages is relevant to the filter efficiency when
using only the body contents for classification. This is an-
other possible point of change in class target (classifying the
language instead of the nature of messages), similar to the
one we found before. Headers content is neutral with a very
weak dependency on the language used in the body of the
message. Again, this is a vast research subject out of the
scope of this paper, which needs to be investigated.

6. DISCUSSION
Although this research is about temporal behaviour of

email classification, all along this work we’ve implicitly sup-
posed that the message generation is, at some extent, a sta-
tionary random process, which obviously isn’t true. So, we
shall try to understand the limitations of our work.

The first point of importance is the duration of our ex-
periment : between 8 and 12 months. We’ve shown that,
during the dates of our experiments, it was plausible to use
old samples to classify recent messages, provided some nec-
essary preprocessing was done (removal of temporal refer-
ences). In other situations, this period may be longer or
shorter, provided qualitative changes in the nature of mes-
sages are limited. The origin of these changes may be inter-
nal (e.g., organizational) or external (a big spammer ceasing
its activity).

Another point of interest is the size of the sliding window
used in our experiments : one month, empirically chosen. It
shall be big enough to make the classifier work near a region
of good effectiveness. On the other hand, its size shouldn’t
be nor too small (to have enough messages to learn and avoid
spurious high frequency noise) nor too big (to avoid over-
smooth hiding interesting behaviors). Both requirements
depend on the kind of classifier being studied.

In MrJ corpus, we can see that the ratio ham/spam in-
creased from, roughly 1:1 to 1:8 (figure 1) during the period
of our experiment. To compensate this, we had two options
: using a variable size window or using the natural capabil-
ity of the classifier to compensate unbalanced class priors.
The latter seemed less complex to implement and there is
no evidence that the former was more realistic.

We’ve done all experiments with one classifier (a logistic
regression classifier), even if other kind of classifiers were

available. Different classifiers have different learning rates.
So, the time dimension may not have the same scale for
different classifiers. Also, it seems to us that generative
classifiers, like Naive Bayes, may behave differently. It may
be interesting to redo all experiments we’ve done with other
kind of classifiers.

A hidden, and not enough explored, result in this exper-
iment is the influence of the dominant language in the le-
gitimate mailbox. The subtlety of some differences between
the two corpora suggests that the lingual composition each
class is an aspect which deserves a deeper investigation.

Another interesting research direction concerns a corpus
with samples from many recipients instead of a single one.
This is a step forward sharing classifiers models to filter
spams for a group of users.

The natural choice for experimenting with a group of re-
cipients could be the Enron data created by TREC spam
track. We’ve done some preliminary experiments with it,
but it seemed to us that although this corpus was fine for
classifiers evaluation, it was quite atypical for the evalua-
tion of the temporal effects we were interested in. In par-
ticular, an important virtual temporal reference appears in
messages from October 2001 (see table 2), represented, at
the same moment, by the bankrupt and the huge increase
in the amount of messages.

Table 2: Distribution of messages in Enron Corpus
# hams # spams

Aug 2001 1881 5055
Sep 2001 2630 4550
Oct 2001 10413 3820
Nov 2001 8359 4419
Dec 2001 3778 3731
Jan 2002 5687 4392

7. CONCLUSIONS
It has been usually assumed that characteristics of email,

and mainly spam, change substantially over time and spam
filters shall absolutely be continuously retrained. Most peo-
ple don’t change the way they usually write legitimate mes-
sages so changes in ham mailboxes come most of the time
from context changes : someone begins to work on a new
project or subscribes to some unusual newsletters. Spam
content changes continually and results from the “arms race”
between spammers and and filter developers.

The use of old training data degrades performance, but
not nearly so much as the use of raw training data in which
the ham and spam have different ages.

Our experiments showed that if temporal references are
removed, training data of mixed age may provide improved
performance in the situation where only new ham or new
spam is available. Header removal is too radical as it dra-
matically compromises overall performance. If a few tell-tale
temporal cues are identified and elided, substituting newer
training data for one class of messages appears to yield im-
proved effectiveness over using old for both. Our approach
to identifying the training cues was not entirely automatic,
and not entirely blind to the training data (but definitely
blind to the test data). We believe it is a good candidate
to be automated. And even if effected manually, it is much
more efficient than labeling a new training set. The cues we



discovered closely match those mentioned by the authors of
the TREC 2005 Spam Corpus [8].

Experiments with MrX corpus (figure 5) had shown that,
for this particular corpus, using old ham is worse than us-
ing old spam, while the same experiment with MrJ corpus
(figure 6) doesn’t present a so noticeable difference. On the
other hand, for both corpora, when both hams and spams
are aged together, effectiveness doesn’t change too much.

We can’t generalize our results, as our experiments were
done with only one kind of classifier (logistic regression),
and only two corpora (MrX and MrJ), but it seems to us
that, provided some preprocessing is done in training data
such as removal of temporal references, it’s possible to use
old samples or mix samples of different ages with limited
effectiveness loss.

We also have shown that incremental update, on both
classes ham and spam, may improve effectiveness but sigle-
sided incremental update degrades the misclassification rate
on the opposite class. However endless incremental update
can eventually generate an overfited model ([16] p. 194),
mainly on classifiers unable to forget less recent samples.

These results aren’t completely surprising and, at some
extent, they confirm assumptions which are usually accepted
without being verified experimentally. On the other hand,
the few experiments we’ve done with only two different cor-
pora had shown that it may not be surprising to get some
qualitatively different results in different contexts. (e.g. the
degeneration with age we noticed when using only the body
of messages).

These experiments also raised some questions which re-
main unanswered and deserves some more deeper research
with other corpora and other classifiers.

To conclude, it seem to us that a better understanding
of data being handled by spam classifiers, and the context,
may improve the effectiveness of spam filters.
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